
Automated fault injection in Verilog
hardware designs

Raven Szewczyk

4th Year Project Report
Computer Science and Physics

School of Informatics
University of Edinburgh

Academic year 2019/2020

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

i

Abstract
Making hardware more resilient to radiation effects is important for many space and ter‑
restrial applications. In this project a tool is created for automatically injecting faults into
Verilog hardware designs, working in simulations and in FPGA hardware implementations.
This helps in identifying potential areas for fault tolerance improvements and debugging
fault‑tolerant designs in presence of bit flips and latch‑up/downs. Verinject is more flexible
than previously developed tools, as it is not tied to a particular vendor of hardware simula‑
tion or synthesis toolchain.

The tool – Verinject – has been tested using a variety of methods, including unit tests and
comparingexperimental resultswithamathematical analysis for a simple circuit. It is shown
that this tool correctly reproduces the predicted fault rates and behaviours in the analysed
circuit. The cost of fault injection testing is shown to be insignificant performance‑wise,
and limited by a factor of 2 in terms of hardware cost compared to an equivalent testbench
without injection. A testbench running on a TUL Pynq‑Z2 FPGA board was 38x faster than
a comparable testbench simulated with the open‑source tool Icarus Verilog. The tool also
worked correctly on larger designs: an Intel 8051‑compatible core and a RISC‑V processor
used in labs for the CArD course.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 My contributions – achieved in this project 2
1.4 Related work . 3
1.5 Results overview . 5
1.6 Structure of the report . 5

2 Background information 7
2.1 Hardware design in Verilog . 7
2.2 Radiation and electronics . 8
2.3 Hardware verification methods . 9

2.3.1 Verilator . 9

3 Design 11
3.1 Verinject — the Verilog code transformation tool 12

3.1.1 Overview . 12
3.1.2 Programming language choice – Rust 14
3.1.3 Bit number assignment . 14
3.1.4 Source transformation process . 18
3.1.5 Output formats . 19

3.2 Supporting Verilog modules . 20
3.2.1 Injector modules . 20
3.2.2 Signal generator andmonitor – for simulation 21
3.2.3 Signal generator andmonitor – AXI slave for FPGA integration 21

3.3 Utility scripts . 23

4 Evaluation 24
4.1 Unit testing . 24
4.2 Waveform inspection . 25
4.3 Array addition experiment . 25

4.3.1 Measurables . 26
4.3.2 Dynamic cross‑section . 27
4.3.3 Cascade effect . 29
4.3.4 Performance . 32
4.3.5 Logic element cost . 33

4.4 Processor design test . 33

5 Conclusions 36
5.1 Main contributions – summary . 38
5.2 Future work . 38

ii

CONTENTS iii

6 Bibliography 40

CONTENTS iv

Declaration

I declare that this report was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

Raven Szewczyk

Chapter 1

Introduction

1.1 Motivation

With more andmore aspects of our lives depending on technology, it’s important to ensure
that the hardware and software used is reliable and safe. As computing integrated circuits
get smaller and use lower voltages, they can become more prone to errors due to charged
particles from cosmic rays. This is mainly a concern in space environments, as on Earth its
magnetic field shields electronics from the majority of charged cosmic rays. However, it is
also relevant for safety critical terrestrial systems,where theprobability of failureof a system
must beminimised. One example effect of radiation impacting a terrestrial computer could
be seen in a local election in Schaerbeek, Belgium– “an Single Event Upset gave a candidate
an extra 4096 votes” as reported by The Independent [Joh17].

Motivated by the importance of radiation hardening of electronics, this project aims to aid
verification of hardware designs under the influence of single event effects. This is enabled
by the widespread use of Hardware Description Languages, such as (System)Verilog. They
provide a standardised representation of hardware designs that can be directly synthes‑
ized into FPGA bitstreams or physical integrated circuit descriptions used in manufactur‑
ing, while remaining relatively high‑level. This way, the source designs can be automatic‑
ally transformed to introduce additional checks in amanner that ismuch less prone to error
than fully manual testbench creation, especially for large designs, and it is not tied to any
single ASIC/FPGA vendor’s toolset either.

1.2 Objectives

The primary goal of this project is to create and evaluate a tool for automatically verifying
Verilog hardware designs for reliability in presence of single event upsets. The sub‑goals
forming the primary goal are as follows:

• Write a (System)Verilog source code transformation tool that adds injection points

1

Chapter 1. Introduction 2

to the reference designs

• Set up a test harness for injecting faults andmeasuring their impact on the outputs

• Test the tool on small designs, for which theoretical fault rates can be easily proven

• Test the tool on at least one large design and compare results with literature

• Benchmark the logic complexity (area) and timecost of verificationwith fault injection
compared to verification without injection

1.3 My contributions – achieved in this project

• Creatinga (System)Verilogsourcecode transformation tool –Verinject –used foradding
injection points:

– Making a formatting‑preserving Verilog parser

– Parsing Verilator’s (open source tool) XML AST output to aid transformation

– Making the fault injection transformation

• Creating an memory‑efficient method of fault injection into Verilog designs without
tying the solution to a particular simulation framework

• Designing and implementing an algorithm for uniquely addressing all memory com‑
ponents in a Verilog design based purely on the source code

• Designing and implementing supporting Verilog modules handling the fault injection
process

• Makingscripts forgenerating reproducibleandcontrollable inputs for the fault injector

• Designing and implementing a memory‑mapped FPGA interface for the fault injector,
based on an open‑source AXI bus slave example

• Testing the tool on various small Verilog code samples

• Designing a simple “array adder” circuit and predicting its behaviour under fault injec‑
tion with the use of mathematical techniques

• Comparing the predictions with the results from running Verinject on the circuit, in
simulation and on an FPGA

• Evaluating the rough cost (in terms of performance and hardware) of fault injection
based on the experiment

• Generating correct Verilog with fault injection for an Intel 8051‑compatible design

Chapter 1. Introduction 3

• Generating correct Verilog with fault injection for a RISC‑V code used in the Computer
Architecture and Design course

• Measuring the dynamic cross‑section of a matrix multiplication program running on
the RISC‑V processor, and comparing results with literature

The most important contribution of this project is efficient fault injection into HDL‑based
hardware designs without tying it to a particular synthesis or simulation tool, like inmost of
theworks evaluated in the following section. Thismethod is alsomoreefficient for hardware
using largememory arrays, which was a problem formultiple other fault injectors. This was
achieved by careful algorithm and data structure design, by making sure they work with
just source‑level structures in Verilog, but take into account their cost in real hardware. This
approach was more difficult than other fault injection projects, but it led to a more flexible
tool in the end.

1.4 Related work

The concept of verifyinghardwaredesigns inpresenceof externally induced faults is not new.
Therefore to evaluate what novelty this project brings, existing work is reviewed below.

Themost accurateway tomeasure the influence of radiation on hardware designs is to phys‑
ically bombard them with ions and measure the results, as done by Evans et al. [Eva+17].
This method requires the target design to be placed under a targetable ion beam. Such
equipment is expensive and the tests are more difficult to perform than software or FPGA‑
based simulationof faults, so thismethod is not suitable for cheaper designs or theprototyp‑
ing phases of other designs. However, this study provides reference data for how effective
the software methods are.

The authors have shown that “when SEUs were injected, 33% of the time it was possible
to obtain a simulation result that was exactly identical to the fault produced by the targeted
ion”. On top of that, 51% reproduced a fault, but did not produce an identical trace, which
means about 84%of faults canbe reproducedby simulating single event upsets. By also sim‑
ulating single event transients in combinatorial logic, the simulations can reproduce 87%
of the experimental faults, which is not a very large improvement, and warrants simulat‑
ing only SEUs, as this project does. This study used a physical accelerator and scripts for
the proprietary ModelSim simulator that injected faults at gate‑level providing very accur‑
ate results, while this project tries to provide a more affordable and generic solution not
tied to one piece of simulation software.

Simbah‑FI [SBB19] is a hybrid fault injector, implemented in the Tcl scripting language for

Chapter 1. Introduction 4

the ModelSim simulator. It can simulate both transient and permanent faults, and injects
them at gate‑level. However, before and after fault injection the circuit is simulated on a be‑
havioural level, which leads to a faster simulation. The problem with this approach is that
the simulation is tied toModelSimas is theprevious approach, and can’t beusedonanFPGA
to accelerate the testing process. The paper also makes reference to multiple other related
works in its Section 2, most of which work on a high level – like modifying CPU instructions
– and others are not automatic, so they’re not as useful for comparison with this project.

NETFI [MV13] takes a completely different approach, it modifies the basic cell library of Xil‑
inx tools. It achieves this by taking the output netlist of Synplify Pro, a synthesis tool, and
adds extra logic at every Flip‑Flop, RAMBlock and combinatorial logic components. The res‑
ults for a 6x6 matrix multiplication program under injection running on a 8051‑compatible
core led to a global error rate of 47.29%, agreeingwith radiation ground testing presented in
[Rez01]. It also adds a SRAM memory controller to store the results from the device tested.
This approach allows NETFI to perform fault injection into proprietary IP cores, because it
works at a netlist level, and it’s independent of the HDL used – Verilog or VHDL. However, it
targets the toolchain of a single FPGAmanufacturer.

FITO [SM08] ismuch closer inmany respects to this project, than theworks evaluated above.
It also works on Verilog source‑level, introducing transient (in wires) and single event (in
flip‑flops) faults. Because it also produces synthesizable results, the authors were able to
measure an 80x increase in speed of testing when experiments were ran on and FPGA com‑
pared to simulations. However, the main limitation of this injection tool is that it doesn’t
handle memory cells, instead it decomposes them into individual flip‑flops, which can be
very costly for designs using RAMs and ROMs extensively. It can also only model stuck‑at
faults at wire boundaries, and not memory cells. Verinject does not attempt to introduce
transient faults into logic, however it can handle SELs in memory cells.

A summarized comparison between the injectors described above is provided in the follow‑
ing table:

Name Point of injection Dependencies SEUs SELs SETs
Evans et al. [Eva+17] Physical chip Ion accelerator ✓ ✓ ✓
Evans et al. [Eva+17] Gate simulation ModelSim ✓ ✓ ✓
Simbah‑FI [SBB19] Gate simulation ModelSim ✓ ✓ ✓
NETFI [MV13] Netlist Synplify&Xilinx ✓ × ✓
FITO [SM08] Verilog Minimal ✓ ✓/× ✓/×
Verinject (this project) Verilog Minimal ✓ ✓ ×

Chapter 1. Introduction 5

1.5 Results overview

During this project, a a working fault injection tool – Verinject – was created. It has been
demonstrated on small Verilog code examples as well as slightly larger designs that it can
handle a lot of the syntactic complexity of the Verilog language. Moreover, the fault injection
process itself has been validatedby analysing its results on an example that’s simple enough
to bemathematically tractable.

An experiment with an array addition circuit, producing sums of a set of input elements, led
to the following conclusions:

• The fault injection used by Verinject yields to behaviour agreeing with mathematical
theory

• For this circuit, the probability of a fault in the input affecting the output is slightly
above one half

• The distribution of how many bits in the output change in response to a single bit in
the input changing follows a geometric series with a ratio of 1

2

• Verinject generates the same test results for the same configuration parameters, con‑
firmed for 1000 cases in simulation and on an FPGA

• FPGA testing was 38x faster than simulation for this simple example

• Adding fault injection slowed down the resulting synthesized FPGA circuit by 1.6%

• Adding fault injection required slightly less than double logic resources on the FPGA,
with much lower cost for large memory modules

Running fault injection on a RISC‑V processor was successful, and for a 6x6 integer mat‑
rix multiplication program led to a 23.1% probability that the result was affected. Com‑
pared with ground radiation testing of a much simpler 8051 processor [Rez01], which led
to a 46.71% result, it is reasonable considering the program was only using about half of
the 32 available registers. The 8051 has fewer and smaller registers, leading to much higher
usage of the individual registers in programs written for it, so it would be more sensitive to
faults than a RISC‑V processor.

1.6 Structure of the report

The remaining part of the report is divided into the following chapters:

1. Chapter 2 – Background – describes the basic concepts behind the topic of this project

Chapter 1. Introduction 6

2. Chapter 3 – Design – delves into the details and rationale of design and implementa‑
tion of this project

3. Chapter 4 – Evaluation – is about themethods used to analyse performance, cost, and
verify the correctness of the implementation based on experimental results

4. Chapter 5 – Conclusions – contains a summary of the results of this project

Chapter 2

Background information

2.1 Hardware design in Verilog

Most modern digital hardware is designed digitally using Hardware Description Languages,
such as Verilog [06] or VHDL. These languages were designed to model and simulate hard‑
ware behaviour, and then synthesis tools were created that can turn those models into real
hardware, be it silicon chips or configuration files for reconfigurable hardware.

This work focuses on Verilog, because it is one of the two main HDLs in use today, and be‑
cause it is taught at this University. Verilog resembles the C programming language inmany
aspects, however because itmodels hardware,many aspects can seem counter‑intuitive for
someone with a software engineering background. The most important points to keep in
mind about Verilog are as follows:

• The code is organized into modules, each module has some of its own logic and can
instantiate other modules

• “Variables” are split into twomain kinds, wire and reg

• wires are generally used to model combinatorial logic, while regs can be used for
both combinatorial and sequential logic, dependent on where they are used

• Most logic is put into always and assign blocks

• always blocks can be combinatorial or tied to one or more edge triggers for model‑
ling sequential logic

• A reg can be amemory component (like a flip‑flop or a RAM) if it’s assigned to in a se‑
quential always block

Once a design is written in Verilog, it can be simulated to test the behaviour of the circuit,
or it can by synthesized into hardware. The process of synthesis can take many steps and
be very slow, especially if the target is to manufacture an integrated circuit (ASIC). How‑
ever, an intermediate stage between real hardware and software simulation can be to tar‑

7

Chapter 2. Background information 8

get an FPGA – field programmable gate array. It’s a reconfigurable circuit consisting of con‑
figurable logic blocks (CLBs), blocks of memory, sometimes specialized signal processing
circuitry, all of those connected by a flexible interconnect. This architecture allows to test
hardware designswithmuch higher performance than software simulation, exploitmassive
parallelism, without incurring the costs of siliconmanufacturing.

2.2 Radiation and electronics

An important concern for many applications where hardware is used is the influence radi‑
ation can have on electronics. In space and nuclear deployments, very high levels of natural
and artificial radiation can cause devices to malfunction frequently if no counter‑measures
are taken. Even in terrestrial applications, despite the shielding the Earth’s magnetic field
provides, radiation can influence the results of computation from digital circuitry. For ex‑
ample, there is a case of a (most likely) cosmic ray influencing the results calculated by
an election results processing system [Joh17].

The radiation‑induced errors can be separated into soft andhard errors (and long‑termdam‑
age from the total radiation dose, but this is not related to this project). Soft errors are often
Single Event Upsets (SEUs), where an ion causes amemory cell to flip its state froma 0 to a 1,
or vice versa. This usually remains the case until the next write to thatmemory cell changes
the value stored again, but the upset may have already propagated and caused wrong res‑
ults in other areas of the system. Single Event Transients are another kind of soft error, when
a charge triggers a signal line in a circuit for a briefmoment. Hard errors includeSingle Event
Latch‑ups, which can result in a CMOS component permanently stuck in one state until a full
power cycle is done. There are also other, more severe errors such as SE Burnouts and Rup‑
tures that cause permanent and irreversible damage to the circuit.

While there are certain manufacturing techniques to minimize the effects of such faults, of‑
ten shielding circuits can bemore expensive or just infeasible compared to hardening the lo‑
gic against potential failures, by e.g. introducing error correction codes. Especially for space
missions, each gram can add a significant cost to the rocket launch, and shielding from ra‑
diation usually involves thick layers of heavy metals. That’s why often a combination of cer‑
tain shielding techniques is used together with digital hardening, to provide high reliability
at a lower cost.

Chapter 2. Background information 9

2.3 Hardware verificationmethods

In hardware engineering, as in any other engineering discipline, high confidence in correct‑
ness of work is desired. To achieve this, various verification methods are used. Some of
the major techniques for HDL‑based designs are as follows:

• Simulation – by writing “testbenches”, the designs are virtually connected to drivers
that give the circuit a pre‑determined input, and monitor the output to verify that it
matches expectations.

• FPGA testing – as above, but the testbenches are implemented for FPGA hardware to
allow the circuit to run a lot faster, at the cost of setup time which is usually much
longer due to synthesis tools.

• Mathematical proofs – for simple designs, a lot of properties can be proven “on paper”
using standard mathematical techniques.

• Formal verification – this is a technique that uses automated reasoning methods to
prove specified properties by exploring all possible states of the designed system.

• Code review – just as in software engineering, another engineer(s) inspect the design
for potential faults manually.

• Self‑test circuitry – for larger designs an extramode is implemented, that allows the fi‑
naldesign to test its variouscomponents tocatchpotential errors thatoccurat theman‑
ufacturing stage.

Because of the high cost of integrated circuit production a combination of all the above tech‑
niques is often used to achievemaximum confidence in the reliability of the design before it
is set in stone (in this case silicon). This project assists with simulation and FPGA testing of
circuits against potential single event effects, thatmayoccur e.g. due to radiation, by provid‑
ing a tool to allow the verification testbenches to test circuits with random, controlled faults
injected.

2.3.1 Verilator

An interesting tool for Verilog verification is the open‑source Verilator[Sny20]. Instead of dir‑
ectly simulating Verilogor compiling it to some sort of bytecodeor executable foramt as a lot
of simulators do, it generates C++ source code that matches the behaviour of Verilog. This
can be used to construct testbenches in C++ rather than Verilog, for much easier integration
with external libraries. The authors of Verilator also claim it is significantly faster than a lot
of commercial simulators.

Chapter 2. Background information 10

This projectmostly uses Verilator’s front‑end, which is accessible through command‑line op‑
tions. Design elaboration – the phase of calculating the entire module tree and calculating
parameters for their instantiations – can require partial Verilog evaluation. This is a complex
task, requiring essentially a Verilog compiler implementation, so this task is deferred to Ver‑
ilator in this project. Instead, Verinject uses the “AST” XML output of Verilator, which is a lot
more than just the abstract syntax tree. It provides a breakdownof the hierarchy ofmodules,
which was necessary for generating fault injection points correctly.

Chapter 3

Design

Thisproject is split intomultiple components, thatallwork together to realize thegoalof veri‑
fyinghardwaredesigns inpresenceof singleeventupsets. The threemainmodulesareas fol‑
lows:

• Verinject — the Verilog source transformation tool written in the Rust programming
language, it adds fault injection points to the designs

• Supporting Verilog modules — these modules drive the generated inputs in the hard‑
ware design to control where andwhen the faults are injected, and to report the injec‑
tions

• Utility scripts — Python scripts that read metadata generated by Verinject and allow
the user to precisely tweak how faults are injected and to understand the reports from
the Verilog modules

This split came naturally as a consequence of the process of verifying designs and the desire
formodularity of the system. The separation of themodules from the source transformation
tool allow different tests to be performed by simply swapping just those modules, leaving
the restof thedesignuntouched. Similarly, theutility scripts allow formore flexibility inboth
setup and reporting phases of the experiments without having to change or unnecessarily
complicate the Verilog modules. Each of these components is described in detail in the fol‑
lowing sections.

For additional context, a roughworkflow to verify a Verilog design for error rates in presence
of injected faults is as follows:

• Run Verinject on the source tomake sure all features used in the source are supported

• Certain forms of syntax from previous standards and code‑generation features might
not work and need to be excluded or rewritten, or Verinject needs to be extended

• Re‑run verinject on the adjusted source, it will generate a copy of the entire hierarchy
with fault injection

11

Chapter 3. Design 12

• (Example test) Write a testbench instantiating the uninjected and the injected design,
driving inputs and tracing outputs

• Adjust testbench to interface with the appropriate – simulation or AXI slave – driver
module

• Set up simulation or synthesis to include the design with and without injections, and
the desired driver and injection modules

• (Optional) Adjust FIFO depths on memory injection modules depending on expected
experiments

• Generate traces with the vj-gentrace script

• Run experiments, logging output from the console or through the MMIO interface of
the AXI slave

• Pipe the output through vj-filter to annotate it with locations where faults were
injected

• Analyse the output

3.1 Verinject — the Verilog code transformation tool

3.1.1 Overview

This tool reads the input Verilog modules, and modifies their source code in the following
way:

• Add an input for the state variable controlling where faults are injected

• Make sure that input is propagated to all submodule instances

• Count all the memory (including register) bits in the modules

• Assign individually addressable bit numbers

• Instantiate injection support modules covering all bits

• Replace reads from injected variables with the values coming from the support mod‑
ules

• Generate signals on writes to injected variables, to keep track when the modified val‑
ues are overwritten

A simplified flowchart of the tool’s operation is presented in figure 3.1.

Chapter 3. Design 13

source_module.sv

verilator --xml-only

LexerXML AST Reader

Source transformer

source_module_inj.sv

Token printer

Verinject

Token Stream

Token StreamAST+Netlist

XML

(System)Verilog

other.sv

source_module_inj.map

Bit to name map

Figure 3.1: Source code transformation flowchart

Insteadof creatingaVerilogparser completely fromscratch, this toolpartially reuses the func‑
tionality of an open source Verilog to C++ compiler, Verilator[Sny20]. Another option was
considered – the open‑source Verilog synthesis framework, yosys. Unfortunately, as it is
mostly a synthesis tool, a lot of information is discarded during the parsing process, and
the parser was tied strongly to the rest of the codebase. This made it difficult to use it for
source code transformation purposes required for this project. Verilator provides the tool
with the final tree of modules based on the parsed sources, and detailed information about
the types of variables and where they are used, in the form of an XML file. However, off‑the‑
shelf parsers were not usable for the goal of source code transformation, as most of them
lost information about the original files, such as whitespace, comments and some syntactic
details that would be irrelevant to a compiler or synthesis tool, but are desirable in the out‑
put of Verinject.

The main reason behind the decision to keep the formatting of the files mostly intact is to
make the output of the tool easy to understand by the authors of the unmodified source
code, so that troubleshooting is easier. Thiswas achievedbywriting a custom lexer, splitting
the source into tokens such as semicolon, identifier, parenthesis, etc., including whitespace
andcomments. Then the tokenstreamwasprocessedbyasource transformer,which inmany
ways is similar to a typical parser, but it doesn’t generate an entire syntax tree.

Chapter 3. Design 14

Instead, it uses a lot of information from Verilator’s XML output and parses only the parts
of the grammar that are needed to e.g. differentiate reads from writes. With that approach,
it works through the token stream, either outputting the tokens unchanged, replacing some
of them, or adds entire blocks of code e.g. for module instantiations. This led to a much
simpler parser design, but it has the drawback of being less flexible in terms of extending
it with functionality different than rewriting variable accesses.

3.1.2 Programming language choice – Rust

Verinject is written in the Rust programming language [20] for multiple reasons. Firstly, it is
a systems‑level programming languagewith the possibility to define C ABI interfaces, which
could be useful if the tool needed to directly interact with Verilog simulators – C interac‑
tion is a part of the Verilog standard [06] in the PLI section. In contrast to using C directly,
it provides strong memory safety guarantees which made it easier to avoid bugs in the pro‑
gram.

Rust also borrows concepts from functional programming, such as pattern matching and
algebraic data types which make it much easier to express parsers and structure transform‑
ations than in C or C++. Subjectively, it is easy to install and can generate statically linked
executables, so it should be easy to deploy both source and binaries of Verinject on hard‑
ware designers’ machines. The language’s strong type system, use of modules, relative sim‑
ilarity to C++ and SystemVerilog, and integrated documentation generator should also help
maintainability and ease of access to the codebase for users potentially wanting to change
the behaviour of the code.

3.1.3 Bit number assignment

One of the problems encountered in this project was to be able to uniquely address indi‑
vidual bits in the entire module tree of a Verilog design, so that faults could be injected pre‑
cisely and repeatably. Related works used either Verilog simulators’ APIs to access the sim‑
ulation netlist containing a representation of all the components of the design, or worked
onasynthesizernetlist level,which tied the implementation toa specific FPGAsynthesis tool
intermediate format. Those approaches make it easier to support a wide variety of designs,
but tie the injection tool to a specific simulator or toolchain,making it difficult to e.g. switch
from simulated injection to on‑FPGA injection for increased speed of verification. They also
make it easier to support Single Event Transients, which are faults injected in the middle of
combinatorial logic rather than at memory components. This project does not attempt to
simulate SETs – however in testing compared to real‑world ion beam tests, adding SET sim‑
ulation increased the accuracy from 84% to 87% [Eva+17]. This is a relatively small increase,

Chapter 3. Design 15

so it was determined to be less important than other goals of this project in its limited time‑
frame.

top (top.v)

wire clock;
wire reset;
reg cycle_counter;
...

u_clk_gen (clk_gen.v)

wire clock;
...

u_alu1 (alu.v)

reg [1:0] opcode;
...

u_add1 (add.v)
wire [31:0] a
wire [31:0] b
reg [31:0] r
...

u_add2 (add.v)
wire [31:0] a;
wire [31:0] b;
reg [31:0] r;
...

u_add1 (add.v)
wire [31:0] a;
wire [31:0] b;
reg [31:0] r;
...

u_alu2 (alu.v)

reg [1:0] opcode;
...

u_add1 (add.v)
wire [31:0] a
wire [31:0] b
reg [31:0] r
...

u_add2 (add.v)
wire [31:0] a;
wire [31:0] b;
reg [31:0] r;
...

u_add1 (add.v)
wire [31:0] a;
wire [31:0] b;
reg [31:0] r;
...

u_imem (imem.v)

reg [7:0]
 imem [0:63];

u_control (control.v)

reg [7:0] ir;
reg [31:0] reg1;
reg [31:0] reg2;
reg [7:0] stall;
...

Figure 3.2: Illustration of a Verilog module hierarchy – connections between modules are
not shown for clarity

For clarity of the followingdescription, a sample Verilogmodule hierarchy is presented in fig‑
ure 3.2. The module hierarchy forms a weakly connected and directed acyclic graph if we
associate each module with a vertex, and each instantiation with an edge from the parent
to the instance. The graph must be acyclic, because otherwise it would represent an infin‑
itely large hardware design that’s impossible to synthesize or simulate in finite time. It must
also be weakly connected, because the top module must exist, and all other modules are
discovered by traversing the instances present inmodule definitions, so no vertex is formed
that is not reachable directly or indirectly from the top vertex.

In the current implementation of Verinject, differentmodule instances are assumed to have
the same internal structure (variable layout andchild instances). Thismeansnotall paramet‑
rized modules are supported, this could be solved by duplicating the module definition for
different parameter sets, but it was not done to simplify the problem for the scope of this
project. This simplification leads to an depth‑first search algorithm for assigning unique
identifiers to every bit in a memory cell (clocked reg variables and Verilog arrays):

1. For each remainingmodule

Chapter 3. Design 16

2. Count howmany bits are contained in its own variables – “own bits”

3. Recursively sum howmany own bits and child bits there are in this module’s children

4. Store “own bits” + “child bits” as the total number of bits for this module

DFS can be safely applied because themodule graph is acyclic, and it will cover all themod‑
ules used in the design thanks to the reachability from top property discussed above. One
important thing to note in this algorithm is that modules can be instantiatedmultiple times
in a single parentmodule. This is alreadyhandledbyDFSas each instance is a separate edge,
so all the bits get counted. Example total counts for the hierarchypresentedpreviously in fig‑
ure 3.2 are visible in figure 3.3.

clk_gen (#own=0, #child=0)

imem (#own=512, #child=0)

control (#own=80, #child=0)

alu (#own=2, #child=64)

add (#own=32, #child=0)

top (#own=1, #child=790)

Figure 3.3: Numbers of memory bits calculated for the module hierarchy

Once those numbers are established, assigning bit identifier to modules is a fairly simple
procedure:

1. For eachmodule M in the design:

2. Addmodule parameter start

3. count← 0

4. For each clocked variable andmemory with b total bits

(a) Add injector instance with bit identifier starting from count+ start

(b) Remember identifier range [count+ start, count+ start+ b− 1] for this vari‑
able

(c) count← count+ b

5. For each direct child of M with c total own and child bits

(a) Set the start′ parameter of the instance to: start′ = count+ start

(b) Remember identifier range [count+ start, count+ start+ c− 1] for this instance

Chapter 3. Design 17

(c) count← count+ c

In summary, by exploiting the structure of the module instance graph, eachmodule is mod‑
ified such that its variables and children know the offset of their bit identifier from the par‑
ent’s start parameter. The parameter is a Verilog parameter, which makes this assignment
translate in a direct manner to a Verilog source level transformation, and the actual sums
of start parameters and offsets are calculated at design synthesis or compilation time. Ver‑
inject also outputs a separate file with the identifier ranges for the whole module structure
printed out recursively, so it’s easy to match bit identifiers with their location in the design.

An example of what changes are done to themodule’s source code in this process is presen‑
ted below:

1 // Before injection
2 module simple_multiple(input clk, input dat, output reg val);
3 reg [1:0] ff1; reg [1:0] ff2;
4 reg [1:0] mem [0:1]; reg ff3;
5

6 always @(posedge clk)
7 begin
8 // logic assigning values to all above variables
9 end

10 endmodule
11

12 // After injection
13 module simple_multiple__injected #(parameter VERINJECT_DSTART = 0) (
14 input clk, input dat, output val
15 , input [31:0] verinject__injector_state
16);
17 // modified original variables and logic
18 // injection instances:
19 verinject_ff_injector #(.LEFT(1), .RIGHT(0), .P_START(VERINJECT_DSTART + 0))
20 u_verinject__inj__ff2
21 (.clock(clk), .do_write(verinject_do_write__ff2),
22 .verinject__injector_state(verinject__injector_state), .unmodified(ff2),
23 .modified(verinject_modified__ff2)
24);
25 verinject_ff_injector #(.LEFT(0), .RIGHT(0), .P_START(VERINJECT_DSTART + 2))
26 u_verinject__inj__ff3
27 (); // similar ports
28 verinject_ff_injector #(.LEFT(1), .RIGHT(0), .P_START(VERINJECT_DSTART + 3))
29 u_verinject__inj__ff1
30 (); // similar ports
31 verinject_mem1_injector #(.LEFT(1), .RIGHT(0),
32 .ADDR_LEFT(0), .ADDR_RIGHT(0),
33 .MEM_LEFT(1), .MEM_RIGHT(0),
34 .P_START(VERINJECT_DSTART + 5))
35 u_verinject_mem1_rd0__inj__mem
36 (.verinject__injector_state(verinject__injector_state), .clock(clk),
37 .unmodified(verinject_read0_unmodified__mem), .read_address(verinject_read0_address__mem),
38 .modified(verinject_read0_modified__mem), .do_write(verinject_do_write__mem),

Chapter 3. Design 18

39 .write_address(verinject_write_address__mem)
40);
41 verinject_ff_injector #(.LEFT(0), .RIGHT(0), .P_START(VERINJECT_DSTART + 9))
42 u_verinject__inj__val
43 (); // ports similar to ff1,2,3
44

45 endmodule

In the code above, the startmodule parameter is namedVERINJECT_DSTART and the bit
identifiers are the P_START parameters to the instantiated verinject modules. The order in
which variables are processed is deterministic, but as it comes from a hashing function in
the internal data structures it can be hard to predict.

3.1.4 Source transformation process

The process of transforming Verilog source code to add fault injection is split into several,
partially intertwined, stages:

1. Read the module structure, variable list and hierarchy from Verilator’s XML output –
located at src/xmlast.rs

2. Generatebitnumberassignmentsasdescribed in theprevious section– insrc/xmlast.rs

3. Split the input sources into arrays of tokens (including tokens for whitespace) – in
src/lexer.rs and src/transforms/mod.rs

4. Detect important syntactic structures in the tokenarray (witha recursive‑descentparser)
and add fault injection – in src/transforms/inject_ff_errors.rs

5. Generate a map file of all the variables in the hierarchy with their bit identifiers – in
src/transforms/generate_bit_map.rs

The following transformations are applied to Verilog files:

• Add a verinject__injector_state port to the module, used for communica‑
tion sent to the injection modules

• Remove theregnet type fromclockedoutputportsandvariables–as they’ll bedriven
from the injection modules

• Foreachclockedvariable’sdeclaration, addan instanceofverinject_ff_injector
with appropriate parameters

• Foreachmemoryvariabledeclaration, addan instanceofverinject_mem1_injector
for each read of the variable

Chapter 3. Design 19

• Modifyeach instanceof childmodules to include theVERINJECT_DSTARTparameter
set to the correct value

• Replace all reads (occurrences on the right side of assignments) of clocked variables
with the outputs of the injection modules

• Formemory reads, alsoaddcode tocapture the readaddress for thememory injection
module

• For all writes to injected variables, add code to capture the fact of writing to allow
erasure of fault in SEU simulations

The transformationsareappliedonly tovariables thatareassigned to inalwaysblocks triggered
on an edge of a signal, that way only sequential logic (memory components) are affected.
Affecting combinatorial logic would require partial synthesis of expressions and injecting
faults at gate level, which is outside the scope of this project.

3.1.5 Output formats

Verinject outputs two kinds of files: Verilog and its ownmap format. Input Verilog modules
are expected to be in separate .v files, and it generates separate __injected.v files for
each module, in a given output directory. The names are changed so that the two module
hierarchies can coexist, for example for a simulation that compares the behaviour of the sys‑
temwith injectionvswithout. Alongside themodules, it outputsatop_module_name.map
file that looks like this:

1 # [this header is not a part of the actual file]
2 # "Range start" "Range end" "Path.VarName" "Total bit count" "Left word range" ..
3 # .. "Right word range" "Left memory size" "Right memory size" "Kind: var/mem"
4 0 1 simple_multiple.ff2 2 1 0 0 0 var
5 2 2 simple_multiple.ff3 1 0 0 0 0 var
6 3 4 simple_multiple.ff1 2 1 0 0 0 var
7 5 8 simple_multiple.mem 4 1 0 1 0 mem
8 9 9 simple_multiple.val 1 0 0 0 0 var

The bit map file is designed for trivial parsing by other tools, it’s a simple list of bit identifier
assignments in consecutive lines. It has columns for the start and end identifiers of bits as‑
signed to a given variable, and also the number of bits permemory word and the Verilog bit
range used in a bit vector declaration to facilitate pretty‑printing.

This file is used by the utility scripts to e.g. convert simulation outputs to a human‑readable
format including locations of injected faults in terms of Verilog modules. The same file can
alsobeused togenerate input injection stimulusbyanother tool –byblack‑ andwhite‑listing
certain signals to generate amore controlled fault injection trace. Moving of this functional‑
ity into separate tools and restricting the format used by the Verilog modules to just single

Chapter 3. Design 20

numbers significantly simplifies the implementation of thosemodules, and reduces the size
and complexity of hardware driving the fault injection.

3.2 Supporting Verilogmodules

The fault injection implementation relies on a few hand‑written Verilog modules, namely:

• verinject_ff_injector.v – handles the injection into non‑array reg clocked
variables

• verinject_mem1_injector.v – handles the injection into array regmemories
with a single write port

• A signal generatormodule – drives the bit identifier signal that triggers fault injections
on chosen clock cycles

• A signalmonitormodule – communicates the triggered fault injectionsback to the sim‑
ulation console or device connected to the FPGA

Each of them is independent of the rest, so they can be swapped out in order to perform
different tests. For example, there are testing implementations of the injector modules (in
verilog/test/) that do not persist the bit flips, that can be used in conjunction with
a test generator (in verilog/gen/verilog_serial_tester.v) that cycles through
all possible bit identifiers. This is the way the bit assignment was verified to be propagated
correctly throughout the Verilog modules, and that it matched the generated map files. An‑
other feature it allows is an easymigration path from simulation testing to FPGA testing and
back, as only the signal generation andmonitoringmodules need to be changed to provide
a matching interface, and the rest of the design with fault injection can be left mostly un‑
changed. Of course, further modifications to the testbench would probably also be neces‑
sary, but assisting with removing non‑synthesizable user code is entirely out of the scope of
this tool.

3.2.1 Injector modules

Three injector module implementations are provided and have been designed from scratch
during this project:

1. verilog/test/∗ – Injects a fault into the given bit only in a single cycle, good for
debugging the tool while looking at simulator waveforms

2. verilog/ff/ and verilog/memory_fifo/ – Have persistent state that simu‑
lates how actual SEUs would behave in circuits

Chapter 3. Design 21

3. verilog/selu/∗–Similar to theabove, butdon’t reset the faultsonwrites tomodel
SE Latch‑ups and SE Latch‑downs

The flip‑flop (register) injection modules create a register of the same width that’s used as
an XORmask for the input. This way, it can handle multiple bit flips in a single register, and
naturally handles a second bit flip occuring at the same location, “undoing” the effects of
the previous flip.

The memory injection modules work similarly, but instead of creating a copy of the entire
memory block, they only store a specified (default of 4) number of bit identifiers into which
faults were injected in a queue structure. This way the impact on resources used by large
memories is minimal. This is important, because in FPGA designs hugememories are some‑
times used in designs, and avoiding a 2x cost allows the designs with fault injection to run
on cheaper FPGAs.

3.2.2 Signal generator andmonitor – for simulation

For simulation, twomodules are provided for fault injection driving andmonitoring:

1. verilog/monitor/verinject_sim_monitor.v–Avery simplemodule,mon‑
itoring the injector state signal for non‑all‑1s values and displaying them to the simu‑
lator console with $display

2. verilog/gen/verinject_file_tester.v–Containsa tracememory (loaded
fromaspecified file) andcyclecounter. It accepts traces fromvj-gentrace in the form
of a list of (cycle, bit id) pairs and generates the right injector state signal at the spe‑
cified times.

The implementationsof thesearequite flexible thanks to their simplicity, andhavebeenuse‑
ful for the tests ranwhile evaluating the tool. The simplicity also allows them to bemodified
or reimplemented for experiments that may need integration with specific IP or proprietary
simulator APIs for richer information.

3.2.3 Signal generator andmonitor – AXI slave for FPGA integration

Inorder toallow the fault‑injecteddesigns to runonFPGAs, a synthesizable interfaceneeded
to be implemented. Because of the hardware available in the School – Tul PYNQ‑Z2 FPGA
boards based on Xilinx Zynq‑series, the FPGA signal generator has an AXI interface[Arm20].
AXI is used in both Xilinx and Intel (previously Altera) FPGA boards with on‑board Arm pro‑
cessors, so this should cover quite a wide array of devices. Instead of designing an AXI slave
interface from scratch, it’s based off an example design from Dan Gisselquist’s bus bridges
repository[Gis20] released under the Apache 2.0 open source license. This design was easy

Chapter 3. Design 22

to extendwith custom registers andmemory blocks exposed to the host Armprocessor, and
it had already been verified in other designs and using formal techniques.

The Verinject module extends the AXI slave module to expose a trace memory, similar to
the one used for simulation, but reprogrammable from the Arm side. It also has a simple log‑
ging interface for the attached testbench and a cycle counter with a MMIO‑controlled reset
switch for the device under testing. This set of features was enough to run the experiments
in this project, and if more ports were needed for another application it would be minimal
effort to extend it. An example usage block diagram for the array addition FPGA experiment
(as described in the Evaluation section) is shown in figure 3.4.

DDR

FIXED_IO

clk_wiz

Clocking Wizard

clk_in1
clk_out1

locked

processing_system7_0

ZYNQ7 Processing System

DDR

FIXED_IO

USBIND_0

M_AXI_GP0
M_AXI_GP0_ACLK

FCLK_CLK0

FCLK_RESET0_N

ps7_0_axi_periph

AXI Interconnect

S00_AXI

M00_AXI

ACLK

ARESETN

S00_ACLK

S00_ARESETN

M00_ACLK

M00_ARESETN

rst_clk_wiz_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

rst_ps7_0_100M

Processor System Reset

slowest_sync_clk

ext_reset_in

aux_reset_in

mb_debug_sys_rst

dcm_locked

mb_reset

bus_struct_reset[0:0]

peripheral_reset[0:0]

interconnect_aresetn[0:0]

peripheral_aresetn[0:0]

sysclk

tb_0

tb_v1_0

clock

verinject__injector_state[31:0]

cycle_number[47:0]

run_designs

log_write

log_data[63:0]

verinject_axi_driver_0

verinject_axi_driver_v1_0

S_AXI

log_data[63:0]

log_write

verinject__injector_state[31:0]

cycle_number[47:0]

run_designsS_AXI_ACLK

S_AXI_ARESETN

Figure 3.4: Block diagram for a Xilinx Zynq testbench for the array addition experiment

The interface on the Arm side is exposed via a simple C header file (located in the same dir‑
ectory as the Verilogmodule). The header defines enums for the bitfield values and a struct
representing the MMIO interface, allowing access to the trace and log memories as arrays,
and other control registers as simple members.

Chapter 3. Design 23

3.3 Utility scripts

Alongside the source transformation tool and Verilog modules, some utility Python scripts
are included for convenience. Python was chosen because of its widespread use for script‑
ing, so it shouldbeavailableonanymachineusedby this tool’susers, and its standard library
is large enough that the scriptswould have no external dependencies. The scripts, with their
purpose are as follows:

• vj-filter – filters the simulation output log to include fault locations based on
a map file; named similarly to a gcc utility, c++filt, which demangles C++ symbols
in console output

• vj-gentrace – generates a stimulus file with a given random seed, and optionally
a list of allowed or banned variables to control where faults are injected

They are simple in design and implementation, and provide enough flexibility to be used
directly, through bash scripts, or modified to suit an alternative purpose.

Chapter 4

Evaluation

In order to verify Verinject yields correct results, can be trusted to be used in validating hard‑
ware, and to determine fault injection’s overhead,multiple approaches of testing were com‑
bined:

• Unit testing—small examplesofVerilogcodearepresent in the test folderof thesource
code, at least one for every major supported feature.

• Manual inspectionona simple sample—wasused toconfirmcorrectbit id assignment
and triggering by inspecting simulation waveforms.

• Run on amathematically‑analysable example — to show that the behaviour of a well‑
known circuit under fault injection matches predictions.

• Run on two real‑world processor designs — to show appliacbility to real‑world scen‑
arios.

These approaches are discussed in the following sections.

4.1 Unit testing

The Verilog language is very expressive, and with that follows a complex syntax. Therefore,
to support enough features for Verinject tobeusable, itwas important towrite tests verifying
that they can be used individually in the first place, before testing more complex cases. For
this purpose, a set of small, simple exampleswaswritten, with a script that runs verinject on
all of them and checks if the output passes the Verilator linter with no errors or warnings.

This approach helped in keeping track of progress in early development, and in finding re‑
gressions which inevitably happened as the project’s code evolved. Some of the cases also
aided in debugging some of the errors encountered with more complex designs – by redu‑
cing the complex errors to theminimal example triggering the bug, more tests were created.

The linter pass/fail approach did not catch any logic errors in themodified code, so it was im‑

24

Chapter 4. Evaluation 25

portant to manually inspect the output on major code changes. The simplicity of examples
and the fact that Verinject tries to preserve a lot of formatting – like whitespace and com‑
ments – in the generated output made the manual inspection a lot easier.

The goal for these testswasnot to exhaustively test the correctness of theproject, or to catch
a majority of bugs, but to aid in debugging and to prevent simple bugs. The unit tests were
successful in this aspect, and a very valuable tool in development of this project, but would
not suffice as the only way of evaluating success.

4.2 Waveform inspection

One of the key features that needed verifying was the bit identifier assignment. It’s core
to the functionality of Verinject – because it controls where faults are injected. A failure in
correct mapping of bits to memory components would make analysis of randomly injected
faults much more difficult and the tool would not be reliable for performing reproducible
experiments. The guarantee that needed testing specifically is: for every request to inject
a fault at a bit with the given identifier, the identifier propagates correctly through the fault
injection mechanisms and leads to an injection in the correct bit.

In order to test this hypothesis, a simple, tractable Verilog module was written (present in
samples/01_bitstest). It contains some memory components of varying sizes, and
performs writes to them with easily predictable values such as all zeros, or a Boolean nega‑
tion of another value. Fault injection is ran on this module with a slightly modified driver:
the persistence of faults is disabled, so they only happen for one clock cycle. On top of
that, the bit identifier is cycled through all its possible values, to test every bit in themodule.
Thesemodifications allow for the entiremodule to be testedquickly, without having to reset
the entire circuit after a full test cycle for another bit identifier.

This prepared circuit was run through Icarus Verilog, an open‑source Verilog simulator (any
other compatible simulator could be used) to produce a set of waveforms of all the signals
present in the system. Then, amanual inspectionwas required toconfirmthat the identifiers
generated corresponded to faults in the right places based on the mapping file and the as‑
signment algorithm “ran” on paper. This verified that the identifiers matched the right bits
in the right memory components.

4.3 Array addition experiment

A first bigger test of the project was the array addition experiment. The goal was to verify
that the behaviour of a known circuit under fault injection would match theoretical expect‑

Chapter 4. Evaluation 26

ations. In order tomake this problem easily tractable, a simple circuit was chosen: it added
numbers stored in twomemory blocks together index by index, and output the sequence of
sums to a port. The core of the logic is presented in the following Verilog listing (skipping
the declarations and initialization for conciseness and clarity):

1 always @*
2 begin
3 index_nxt = index_r;
4 if (run)
5 begin
6 index_nxt = index_r + 8'b1; // loops around on overflow
7 end
8 word_a = memory_a[index_r];
9 word_b = memory_b[index_r];

10 sum = word_a + word_b;
11 end
12

13 always @(posedge clk, negedge rst_n)
14 begin
15 if (!rst_n)
16 begin
17 index_r <= 0;
18 end else if (run)
19 begin
20 index_r <= index_nxt;
21 end
22 end

4.3.1 Measurables

Themeasurables we can reason about and that yield interesting results are as follows:

1. Dynamic cross‑section: Probability of a fault injected into one random bit affecting
the output of the circuit during its entire run at all

2. “Cascadeeffect”: Distributionof thenumber of bits in theoutput changedacross trials
– in every trial only one bit in the circuit is flipped

3. Time toperformone trial: measureswhat the impactof fault injection ison the runtime
of simulation and FPGA trials

4. Cost in logic elements on an FPGA: measures the resource cost of introducing fault
injection compared to the base circuit

Even though this is a very simple circuit, all the above effects will be present in bigger, more
complexdesigns suchasprocessors. However, in the caseof this vector additionexperiment
they canbepredictedwith relative ease, so the injectionmethodology canbe verifiedbefore
applying it to designs that can’t be analysedmathematically.

Chapter 4. Evaluation 27

4.3.2 Dynamic cross‑section

4.3.2.1 Theory

Not every injected fault will affect the computation performed by a digital circuit. For ex‑
ample, in many computer programs there will be sections of code that don’t use the value
of a particular register (it is “dead”), after which the register will be loadedwith a fresh value.
If a non‑permanent fault injection occurs in that register while it is “dead”, the computation
won’t be affected at all. Another example likely to happen in a real system is if the most
significant bit of a register gets latched to a zero, and the register is only used for small, pos‑
itive integers. In that case the impact of the fault won’t be visible to the running programs.
Velazco, et al. [VRE00] call these errors “tolerated errors”.

In nuclear physics, the probability that a particle in an accelerator interacts with the target
is proportional to a characteristic parameter of the target, called the cross‑section. Hence
the name dynamic cross‑section of a program or circuit – it is the fraction of bits located in
time and space that under a fault injectedwill affect the results. This dynamic cross‑section
canbeused togetherwitha static cross‑section (of thephysical componentsmakingup logic
gates and memory cells) in the nuclear reaction rate equation to estimate the error rates in
a physical system in a pre‑determined environment. The simplest form of the equation is
that the number of reactions per time per volume is equal to the product of the particle
beam flux and the cross‑section of the system.

For our system, estimating the dynamic cross‑section analytically is very simple. If a bit flip
is injected into any bit of either of the source matrices, the result will change if, and only if,
the sum using the particular bit has not been calculated yet. Another possibility is an injec‑
tion into the index register, which will start adding completely different values, which will
also affect the output seen from the chip. For the first case, we expect the probability of
an error leading to a change in the output to be 1

2 because the only factor at play is whether
the modification to a bit occurs before or after (in time) the calculation of the sum for that
particular index, and the time of injection and the index to which the fault is injected are
two independent, uniformly distributed random variables. The easiest way to visualise this
is with a table showing whether an injection at a particular word, and particular time leads
to change in result (✓) or not (×):

Word t ∈ [0, 31] t ∈ [32, 63] t ∈ [64, 95] t ∈ [96, 127]

W0 ✓ × × ×
W1 ✓ ✓ × ×
W2 ✓ ✓ ✓ ×
W3 ✓ ✓ ✓ ✓

Chapter 4. Evaluation 28

Becauseboth theword indexand timeareuniformlydistributed, for a largenumberofwords
the probability is approximately 1

2 as readoff the above table. Formanywords, the potential
faults injected into the index register become unlikely – for n b‑bit words there are nb bits in
thewordmemory, and only log2 n bits for the index register – an exponentially smaller num‑
ber. Therefore it’s expected for the circuit under fault injection to yield a different (wrong)
result in slightly more than half of the cases with faults injected.

4.3.2.2 Experimental results

In order to verify this theory, the circuit was run through a testbench that compared the res‑
ults from a reference version with the results from the version with fault injection added by
Verinject. The test was repeated 100000 times with different random seeds for the fault in‑
jector, and all discrepancies were stored into separate files for easy classification. The test
circuit had two arrays of 256 32‑bit words each added together, with an 8‑bit index register.

In the results, in 50448 of 100000 cases there was a fault in the output and in the remaining
49552 cases there was no fault reported. This agrees with the theoretical predictions from
the previous sections, giving a dynamic cross‑section of 50.5% – slightly higher than half,
as expected. The probability of the fault occurring in the index register (given that a fault is
occurring somewhere) is 8

8+2∗256∗32 = 8
16392 which is 1 in 2049, so the expected number of

cases for this would be 49, and in the 100000 cases it occurred 45 times – again matching
the theory.

This test was also used to perform a validation of the FPGA implementation of fault injec‑
tion. The same design was run on the FPGAwith the AXI adapter connected to the on‑board
Arm processor. The disparities between the two circuits were logged on the FPGA, and read
back from C using the memory‑mapped interface of Verinject’s AXI adapter, then sent back
to the host PC over an UART serial port emulated over USB by the board. The same fault in‑
jector configurations were used to check if the faults are the same between simulation and
hardware.

The comparison of the faults recorded showed, that the FPGA version showed the same
faults as the simulated one, and the faults were in the same place, time (cycle), and the dif‑
ferences in the output from the tested circuit were exactly the same. This confirms that Ver‑
inject can be used portably and simulations can be turned into FPGA tests relatively easily,
allowing for more tests to be performed in a shorter time (this is described in the Perform‑
ance subsection). And with a failing FPGA test, the same settings can be used in the injector
to reproduce the failure in a simulator, allowing for much easier troubleshooting thanks to
the simulator’s ability to visualise all signals in the design.

Chapter 4. Evaluation 29

4.3.3 Cascade effect

4.3.3.1 Theory

Another interestingmetric to look at is how a single fault in a single bit can “propagate” and
cause multiple faults in the output. It might seem obvious, but it is important to note that
logic and memory components are interconnected, and if a change in one of themmatters
for theoutput, it probably affectsmultipleother components in the system. This canbe seen
even in this very simple addition circuit, for example:

• Let’s take the binary sum 0011 1001 + 0001 0010 = 0100 1011

• If we flip the rightmost bit in the sum: 0011 1001 + 0001 0011 = 0100 1100, one bit
changed in the input led to three bits in the output changing

• However, if we flip the leftmost bit: 1011 1001 + 0001 0010 = 1100 1011, a one‑bit
input change leads to a one‑bit output change

This behaviour is caused by the carry chain in addition – flipping one bit can cause many
others to flip if it changes the carry propagation behaviour.

To predict how the bits may change, we have to look in detail at how the carry process in
binary addition works. Because in this project faults are not injected into combinatorial lo‑
gic, unless an adder is pipelined, we can assume that any adder circuit will behave the same
when a fault is injected into its input, as they all would produce the same result. Therefore,
we can use a simple ripple‑carry adder as our mathematical model for addition behaviour.
Let’s take a look at the truth table for a full adder component (adding twobits anda carry‑in):

Row a b cin cout s

0 0 0 0 0 0
1 0 0 1 0 1
2 0 1 0 0 1
3 0 1 1 1 0
4 1 0 0 0 1
5 1 0 1 1 0
6 1 1 0 1 0
7 1 1 1 1 1

First important observation is that any change in the carry‑in signal leads to a change in
the sum signal – which means that any carry‑in change in a sum would lead to at least one
extra change in the resulting sum on top of the less significant bit flipped in the first place.
To predict how often this will happen, we need to estimate how often an extra carry will be
generated.

Chapter 4. Evaluation 30

The fault can affect only one of the three inputs to any full adder, as we assume there is only
a single fault injected in this analysis. If it’s in a or b, this is the first failing bit, otherwise
if cin has a fault that means a fault has propagated from the previous bit already. Because
the adder computes a sum, which is associative and commutative, we can assume without
a loss in generality that the fault occurs in a – if it occurs in any other input, it’s equivalent to
swapping that input with a, and the result would be the same.

With these facts and assumptions, we can now obtain the probability that a bit flip in one
of the inputs to the adder will propagate to the next adder in the carry chain. Let’s call this
probability Pp. A fault will propagate if a flip in a leads to a flip in cout. This occurs for rows
1, 2, 5 and 6 – 4 out of 8 possibilities. Therefore Pp is 1

2 .

We can now combine this knowledge with the base probability of a fault affecting the result
at all from the previous section. LetP (n) be the probability thatn bits change in the output
upon a single random fault injected into the input to the adder. P (1) + P (2) + · · · = 1

2

because that’s the probability that a change will occur at all. This is mutually exclusive with
a fault not occurring, so P (0) = 1− P (1) + P (2) + · · · = 1

2 .

To calculate P (1) let’s use the fact that it means there is a fault but it won’t be propagated.
Propagation is conditional on a fault or the previous propagation, which lets us multiply
the probabilities in a simple fashion:

P (1) = P (fault)× P (not propagated) = (1− P (0))× (1− Pp) =
1

4

By repeating this reasoning with one propagation, we obtain:

P (2) = P (fault)×P (propagated)×P (not propagated) = (1−P (0))×Pp×(1−Pp) =
1

8

By induction, this leads us to a geometric series of probabilitiesP (n) =
(
1
2

)n+1. We can see
this set of probabilities is complete for an infinite number of added bits, as the sum of this
series is S = 1

2 + 1
4 + 1

8 + · · · = 2S − 1, so S = 1.

Adding a boundary condition that faults can’t propagate at the end of the word size would
only slightly affect this distribution of probabilities, and finding an approximate geometric
series in experimental results would be a good confirmation of the theory working without
getting more precise estimations. The main property of geometric series is that the ratio
between consequent elements is constant, so that’s the property to look out for in the res‑
ults.

4.3.3.2 Experimental results

When the injection was performed in the previous section, not only the presence of faults
was logged, but also theXORof the sumwith fault injectionand the referenceone. Therefore

Chapter 4. Evaluation 31

counting howmany bits were changed in every example is as simple as looking at the num‑
berofones in thebinary representationof theXORvalue. Thesummarised results for thesame
100000 experiments are presented in figure 4.1 and table 4.1.

0
1
2
3
4
5
6
7
8
9
10
11
index

Figure 4.1: Pie chart of themeasureddistributionof thenumberof bits affected in theoutput
when a single fault is injected

The ratio between consecutive frequencies remains fairly constant for n up to 9, above that
the small probabilities and number of trials limited to 100000 lead to less accurate results.
However, the experimental probabilities are reasonably close to the expected ones derived
in the previous section. Therefore, the circuit under Verinject’s fault injection performed as
expected in the analysis before.

It’s also visible that the probabilities for n > 2 are always slightly lower (the inverse probab‑
ilities in the table are higher) than their expected value. This is most likely due to the finite
size of a word in this circuit – 32 bits. When a fault is injected into e.g. the 30th bit, it is im‑
possible for it to carry into more than 3 bits. Generally, the shorter the word, the less likely
higher n‑s are in this distribution, which explains the observed behaviour.

This behaviour is interesting to study not only because it confirms that the fault injector de‑
veloped in this project works as intended, but also because it shows on a simple example
how faults can “cascade” through real systems. Reducing this effect, for example by isolat‑
ing components in a fault‑tolerant system, can yield a much safer system than one where
fault from any subsystem can propagate to any other subsystem. Example ways of achiev‑
ing this include triple modular redundancy (TMR) – where a given subsystem is duplicated
three times, and some extra voting logic makes sure faulty computation doesn’t affect any
other module. Another possibility are error correcting codes, such as SECDED, used in con‑

Chapter 4. Evaluation 32

n Cases Ratio to previous cases Experimental P (n)−1 Expected P (n)−1

0 49552 – 2.02 2
1 25935 0.52 3.86 4
2 12749 0.49 7.84 8
3 6181 0.48 16.18 16
4 2773 0.45 36.06 32
5 1455 0.52 68.73 64
6 713 0.49 140.25 128
7 322 0.45 310.56 256
8 155 0.48 645.16 512
9 71 0.46 1408.45 1024
10 47 0.66 2127.66 2048
11 2 0.04 50000.00 4096

in index 45 – 2222.22 2049

Table 4.1: Simulation data for the “cascade effect” experiment

junctionwith e.g. memory scrubbers that periodically remove faults fromamodule byusing
redundant data to reconstruct the state from before a fault occurred.

4.3.4 Performance

Another aspect this design allowed to evaluate is the performance of this fault injection im‑
plementation. The design was run in the open‑source simulator Icarus Verilog, and on a Xil‑
inx FPGA‑basedPYNQ‑Z2board. Timesweremeasured to run the first 1000 tests from the set
used in sections above, each case with a different but consistent random seed. In order to
see the impact of fault injection, a second set of tests was run with the “injected” module
in the testbench replaced by a second copy of the “uninjected” module. The simulator was
running on 1 core of an Intel i7‑6700HQ processor with 16GB of RAM available. The results
are presented below:

Platform Fault injection added Time to perform 1000 tests (seconds)
Simulator ✓ 115 (26% longer than without injection)
Simulator × 91
FPGA ✓ 3.04

The FPGA tests with fault injection are almost 38x faster than the corresponding simulator
tests, which shows howmuch time can be savedwith FPGA testing. Formuch larger designs,
such as processors, the difference may be between being able to run the tests before ship‑

Chapter 4. Evaluation 33

ping a product, and not. Therefore, the flexibility providedwith Verinject is useful – it allows
to move to a higher‑cost platform for higher performance without radically changing the
fault injection procedure.

The FPGA testing time was constrained largely by the bus speed from the on‑board Arm
processor to the host computer, so to measure the impact of fault injection on the speed
of the resulting circuit another measurement can be used: shortest clock period possible
for this circuit. Synthesized with Xilinx Vivado with relatively aggressive optimizer settings,
the testbench with fault injection was limited to a clock of 9.717ns, and without injection it
only decreased to 9.558ns (1.6% change). This is not a very large impact, thanks to the very
small overheadof the injectionmodules, however itmightbehigher formorecomplexdesigns.

The testbenches were also not excessively optimized – obvious bottlenecks were removed,
but theoretically it would be possible to get more performance out of this circuit with a lot
more work. However, this is more representative of a real situation, where there usually is
a limited budget for optimizing the testing infrastructure specifically.

4.3.5 Logic element cost

Verinject requires roughly double the “small” memory components (non‑arrays), and a con‑
stant amount ofmemory for each larger array. Thismeans it should scale roughly linearly in
terms of logic element cost for FPGAs and not require a lotmore RAM components. This can
be seen in the logic element costs for this design, as summarized in the following table:

Component Used with injection Used without injection
Look‑Up Table 3325 1856
LUTRAM 713 713
Flip‑Flops 2013 1608
Block RAMs 2.5 2

It’s clear that there is a large cost to adding fault injection to the design, however it is less
thandouble in this case. Therefore existing FPGA testing infrastructure canbe either utilized
without a change or would just need to be expanded 2x to cover the requirements for fault
injection with Verinject.

4.4 Processor design test

The previous tests were relatively small‑scale, useful for troubleshooting and proving parts
of the project worked as intended. A logical next step was to test Verinject on amuch larger
design – such as a processor. Initially the Intel 8051‑compatible core [TS01] was chosen,

Chapter 4. Evaluation 34

because an 8051 processor was previously tested by the NETFI project [MV13], and with an
ionbeam inhardware [Rez01]. Unfortunately, the corewaswritten in Verilogbefore the 2001
version, which is the primary target of Verinject, so a lot of code needed to be adapted to use
slightly newer syntactic structures.

The 8051 Verilog code passed Verilator and Icarus Verilog lint checks after the changes, and
the code generated by Verinject based on that also passed those checks – which was the
first success. However, in simulation, the author was not able to get the original core (even
beforemodifications) tocorrectly run8051programs. Simple changes, suchasaddingaNOP
before the instruction,were changing thebehaviourof theentireprocessor. After spendinga
few days on troubleshooting, instead of reverse engineering the entire designmade in 2001,
the author changed focus to use a more modern processor design instead. The RISC‑V core
used in the Computer Architecture and Design course was chosen.

Adapting its source for Verinject was a much simpler task, it only used a couple of unsup‑
ported Verilog syntax features: a couple of for loops, and preprocessor usage for module in‑
stantiation. Both of these were very easy changes, by just manually unrolling the loops and
replacing a preprocessor define usage with the definition’s value itself. A fewmore complex
statements confused the Verinject parser, and required putting begin/end blocks around
them, but no other major issues were encountered. When the modified processor design
was confirmed to run simple programs correctly in simulation, fault injection code was ad‑
ded. The furthermodified corewasalso confirmed to run thoseprograms,without any faults
actually injected yet.

With a working processor with fault injection, a program for testing was needed. In order
to stay close to the original goal of verifying the results against previous research work, a
6x6 integer matrix multiplication programwas written in C, performing the same operation
as the radiation‑tested 8051 processor [Rez01] (table 2.11 in that thesis). The results for the
multiplicationwere verifiedwith a similar C program ranon the author’s x86 laptop, tomake
sure the programwas working correctly.

Fault injection enabled for the entire design would have led to results incomparable with
the radiation testing, as the RISC‑V core hasmanymore registers, andmost imporantly a lot
more memory than the 8051. The 8051 had 128 bytes of total RAM, and about 24 8‑ and 16‑
bit registers. The RISC‑V core has multiple kilobytes of RAM, split into instruction and data
memory, and 31 32‑bit general purpose registers, plus more special function registers.

In order to see the impact of these additional (mostly unused)memory cells, the experiment
was repeated with three areas for fault injection: whole design without the branch predic‑
tion and instruction memory as the first area, second like the first, but also excluding the

Chapter 4. Evaluation 35

mostly unused data memory, and third was just the general purpose registers. The results
for 1000 trials for each of these areas are summarized in table 4.2. The instruction memory
was not included, because the program was very small, and it could be treated as a read‑
only memory anyway, if it was for example Flash memory, it would be immune to radiation
effects. It is the most likely area in a real processor to be hardened against radiation due to
how critical it is.

Tested area Dynamic cross‑section
Without ICCM&BP 4.6%
Without ICCM, BP& DCCM 13.0%
Register file 23.1%
8051 ground radiation testing [Rez01] 46.71%
8051 simulation [Rez01] 50.05%

Table 4.2: Dynamic cross‑section for the RISC‑V processor performing a 6x6matrixmultiplic‑
ation

It’s clear that the results are different from the 8051, most likely due to the larger number
of unused memory structures in the RISC‑V processor for this simple program. The results
are, however, reasonable – leading to the belief that Verinject works correctly. When inject‑
ing faults just to the register file, the measured dynamic cross‑section (explained in section
4.3.2.1) is only half of the one measured for the 8051. Looking at the disassembly of the C
program for the RISC‑V processor, only roughly half of the available 32 registers were used,
and because the 8051 has fewer registers to work with, the program in [Rez01] likely used
all of those. This can explain the difference for this experiment. It also means that RISC pro‑
cessors,whichgenerally havemore registers,maybe safer for operation inhigh‑radiationen‑
vironments than simple embedder processors, simply because it’s less likely a critical com‑
ponent would get hit by an ion. On the other hand, they would have greater total surface
area (static cross‑section), meaning a higher probability of getting hit at all, so this might
balance out the gains from a smaller dynamic cross‑section.

Chapter 5

Conclusions

In conclusion, during this project a working Verilog source code transformation and fault in‑
jection was created. It can be used as a part of the process of designing hardware for use in
environments that require fault tolerance. Verinject – the tool developed – helps in identify‑
ing areas for stronger fault tolerance and to debug issues with handling random faults. It’s
more flexible than a lot of other existing fault injection tools, because it is not tied to any
particular vendor’s toolkit, instead it operates directly on Verilog source files. The tool is re‑
leased under an open‑source license at https://github.com/kubasz/verinject,
with certain copyrighted sample code removed from the public repository (such as the RISC‑
V CPU core).

The tool has amodular design, with the sourcemodification, fault injection and fault report‑
ing in separate modules with clearly defined interfaces. This allows for modifications to be
easily made to adjust it to a particular use case. Simulation and FPGA interfaces for fault
injection control have been developed, and confirmed to work in practice. The generation
of test stimuli is achieved with a relatively simple script, with enough configuration options
to satisfy a lot of needs, but thanks to themodularity it’s also easy to program in new capab‑
ilities.

A major problem solved in this project is efficient (in the sense of little overhead) fault in‑
jection into HDL‑based hardware designs without tying the injection to a particular simu‑
lator API or FPGA configuration format, like many previous works [SBB19] [MV13] [Eva+17]
did. It is also more efficient than the FITO [SM08] project for designs using large memories,
by not requiring decomposing them into individual flip‑flops. This was done by designing
algorithms working on the HDL specification level of a circuit, rather than final gate config‑
uration, while taking into account the fact that certain HDL structures correspond to much
more expensive hardware structures. This approachwasmore difficult, but led to a farmore
flexible solution in the end. The difficulty cost unfortunately alsomeant that not all features
of Verilog were implemented in the timeframe of this project, but enough were done that it
was possible to use Verinject on real‑world designs by spending very little time modifying

36

https://github.com/kubasz/verinject

Chapter 5. Conclusions 37

them.

A new whitespace‑preserving parser for Verilog was developed out of necessity, but a large
amount of information is parsed by the widely‑used open‑source Verilog simulation tool,
Verilator [Sny20]. Preserving the rough formatting, layout, identifiers and comments in a file
helps significantly in debugging problems using this tool, as amajor intended use case is to
reproduce a faulty test case in simulation to find the root cause of a problem. Bits to inject
faults into are addressed by identifiers generated from a predictable algorithm, allowing for
consistent simulation and hardware behaviour of the code with fault injection. Assigning
these identifier based only on the source of the module hierarchy was a challenge, and an
algorithm for doing this based on the graph properties of the Verilog module structure was
developed and presented.

Verinject was tested using a variety of different methods. It was run on a set of short syntax
examples to ensure it supports a wide variety of constructs in the language. On top of that,
the bit identifier assignment was tested by manual inspection of a simple example. Much
bigger experiments were also performed with an array addition circuit, and two processor
designs.

The array addition experiment confirmed that the behaviour of faults injected by Verinject
matches expectations from mathematical theory. For example, the dynamic cross‑section
of the design – the probability that a bit error in a random location and time would lead
to an error in the output – was very close to the theoretical prediction. Moreover, this test
allowed to measure the impact of fault injection on the design: a small, 1.6% maximum
synthesized frequency impact and a less than double increase in logic component usage on
an FPGA.

Memory block usage of fault injection components is minimal, thanks to the use of small
buffers storing injected faults rather than duplicating entirememory arrays. Testing in simu‑
lation using Icarus Verilogwas found to be 38x slower than equivalent testing on an FPGA, by
running the same set of 1000 tests on both. This also confirmed that the results and faults in‑
jectedbetween the two targetswere the same–which allows for theuse caseof reproducing
a fault from an FPGA testbench in simulation.

Verinject generated correct fault injection code for two larger processor designs – an 8051‑
compatible core [TS01] and a RISC‑V core from the CArD course labs. Running the experi‑
ments on the RISC‑V core led to a predicted dynamic cross‑section of amatrixmultiplication
program tobe 23.1%when the register filewas targetted, compared to 46.71%for ground ra‑
diation testingof an8051processor [Rez01]. Thedifference canbeexplainedby theprogram
not using all of the available 32 general purpose registers, compared to very few registers in

Chapter 5. Conclusions 38

the 8051, where most operations are performed through a single accumulator register.

5.1 Main contributions – summary

• Designing and implementing an algorithm for uniquely addressing all memory com‑
ponents in a Verilog design based purely on source code analysis

• Creating an memory‑efficient method of fault injection into Verilog designs without
tying the solution to a particular simulation framework

• Makingscripts forgenerating reproducibleandcontrollable inputs for the fault injector

• Designing and implementing a memory‑mapped FPGA interface for the fault injector,
based on an open‑source AXI bus slave example

• Designing a simple “array adder” circuit and predicting its behaviour under fault injec‑
tion with the use of mathematical techniques

• Comparing the predictions with the results from running Verinject on the circuit, in
simulation and on an FPGA

• Evaluating the cost (in terms of performance and hardware) of fault injection based
on the experiment

• Generating correct Verilog with fault injection for an Intel 8051‑compatible design

• Generating correct Verilog with fault injection for a RISC‑V code used in the Computer
Architecture and Design course

• Measuring the dynamic cross‑section of a matrix multiplication program running on
the RISC‑V processor, and comparing results with literature

• Producingasourcecode transformation‑based fault injection toolusableonsmall and
large Verilog designs

5.2 Future work

This project could be taken further by testing more Verilog designs and comparing the res‑
ults with ones from ion beam experiments performed on equivalent physical hardware. Not
all Verilog features are supported too, for example generate statements do not work in
Verinject at all due to dynamic code generation, but could conceivably be supported.

Another possible interesting research avenue would be automatic fault finding and report‑
ing. Currently this burden is placed on the testbenchwriter. There are techniques in the soft‑

Chapter 5. Conclusions 39

wareworld suchas fuzzing that allowcontrolled randomizationof inputsbasedon static and
dynamic code analysis. Applying these techniques to hardwarewith fault injectionwould al‑
low for an even higher level of automation for testing, and this project could provide a basis
for such a project.

This project could also be used to verify a design of a radiation‑resilient processor, for ex‑
ample for a CubeSat satellite project or other relatively low‑budget space applications. This
was the original goal of this project in the first couple of weeks, but then the project group
decided to split into smaller, individual project, so this goal was never attempted.

Chapter 6

Bibliography
[06] ‘IEEEStandard for VerilogHardwareDescription Language’. In: IEEE Std 1364‑2005

(Revision of IEEE Std 1364‑2001) (Apr. 2006), pp. 1–590. DOi:10.1109/IEEESTD.
2006.99495.

[20] Rust Programming Language website. 2020. URL: https://www.rust-lang.
org/ (visited on 16/01/2020).

[Arm20] Arm. AMBA – Advanced Microcontroller Bus Architecture. 2020. URL: https://
developer.arm.com/architectures/system-architectures/
amba (visited on 06/03/2020).

[Eva+17] A. Evans et al. ‘Heavy‑Ion Micro Beam and Simulation Study of a Flash‑Based
FPGA Microcontroller Implementation’. In: IEEE Transactions on Nuclear Science
64.1 (Jan. 2017), pp. 504–511. iSSN: 1558‑1578. DOi: 10.1109/TNS.2016.
2633401.

[Gis20] DanGisselquist.WB2AXIPSP:busbridgesandotheroddsandends. 2020.URL:https:
//github.com/ZipCPU/wb2axip/blob/master/rtl/demoaxi.v
(visited on 06/03/2020).

[Joh17] Ian Johnston. ‘Cosmic particles can change elections and cause planes to fall
through the sky, scientistswarn’. In:The Independent (Feb. 2017). URL:https://
www.independent.co.uk/news/science/subatomic-particles-
cosmic-rays-computers-change-elections-planes-autopilot-
a7584616.html (visited on 30/10/2019).

[MV13] Wassim Mansour and Raoul Velazco. ‘An Automated SEU Fault‑Injection Method
and Tool for HDL‑Based Designs’. eng. In: IEEE Transactions on Nuclear Science
60.4 (2013), pp. 2728–2733. iSSN: 0018‑9499.DOi:10.1109/TNS.2013.2267097.

[Rez01] S. Rezgui. ‘Prédiction du taux d’erreurs d’architectures digitales : uneméthode et
des résultats expérimentaux’. In: (Jan. 2001). URL: https://tel.archives-
ouvertes.fr/file/index/docid/163484/filename/PTE_118.
pdf (visited on 06/03/2020).

40

https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2006.99495
https://www.rust-lang.org/
https://www.rust-lang.org/
https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/architectures/system-architectures/amba
https://doi.org/10.1109/TNS.2016.2633401
https://doi.org/10.1109/TNS.2016.2633401
https://github.com/ZipCPU/wb2axip/blob/master/rtl/demoaxi.v
https://github.com/ZipCPU/wb2axip/blob/master/rtl/demoaxi.v
https://www.independent.co.uk/news/science/subatomic-particles-cosmic-rays-computers-change-elections-planes-autopilot-a7584616.html
https://www.independent.co.uk/news/science/subatomic-particles-cosmic-rays-computers-change-elections-planes-autopilot-a7584616.html
https://www.independent.co.uk/news/science/subatomic-particles-cosmic-rays-computers-change-elections-planes-autopilot-a7584616.html
https://www.independent.co.uk/news/science/subatomic-particles-cosmic-rays-computers-change-elections-planes-autopilot-a7584616.html
https://doi.org/10.1109/TNS.2013.2267097
https://tel.archives-ouvertes.fr/file/index/docid/163484/filename/PTE_118.pdf
https://tel.archives-ouvertes.fr/file/index/docid/163484/filename/PTE_118.pdf
https://tel.archives-ouvertes.fr/file/index/docid/163484/filename/PTE_118.pdf

Chapter 6. Bibliography 41

[SBB19] Anderson Luiz Sartor, Pedro Henrique Exenberger Becker and Antonio C. S. Beck.
‘A fast and accurate hybrid fault injection platform for transient and permanent
faults’. In: Design Automation for Embedded Systems 23.1‑2 (2019), pp. 3–19. DOi:
10.1007/s10617-018-9217-0.

[SM08] M. Shokrolah‑Shirazi and S. G. Miremadi. ‘FPGA‑Based Fault Injection into Syn‑
thesizable Verilog HDL Models’. In: 2008 Second International Conference on Se‑
cure System Integration and Reliability Improvement. July 2008, pp. 143–149. DOi:
10.1109/SSIRI.2008.47.

[Sny20] Wilson Snyder. Verilator website. 2020. URL: https://www.veripool.org/
wiki/verilator (visited on 16/01/2020).

[TS01] SimonTeranandJakaSimsic.OpenCores8051‑compatible core. 2001.URL:https:
//opencores.org/projects/8051 (visited on 06/03/2020).

[VRE00] R. Velazco,S.RezguiandR.Ecoffet. ‘Predictingerror rate formicroprocessor‑based
digital architectures through C.E.U. (Code Emulating Upsets) injection’. In: IEEE
Transactions on Nuclear Science 47.6 (Dec. 2000), pp. 2405–2411. iSSN: 1558‑1578.
DOi: 10.1109/23.903784.

https://doi.org/10.1007/s10617-018-9217-0
https://doi.org/10.1109/SSIRI.2008.47
https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator
https://opencores.org/projects/8051
https://opencores.org/projects/8051
https://doi.org/10.1109/23.903784

	Abstract
	Contents
	Declaration of own work
	Introduction
	Motivation
	Objectives
	My contributions – achieved in this project
	Related work
	Results overview
	Structure of the report

	Background information
	Hardware design in Verilog
	Radiation and electronics
	Hardware verification methods
	Verilator

	Design
	Verinject — the Verilog code transformation tool
	Overview
	Programming language choice – Rust
	Bit number assignment
	Source transformation process
	Output formats

	Supporting Verilog modules
	Injector modules
	Signal generator and monitor – for simulation
	Signal generator and monitor – AXI slave for FPGA integration

	Utility scripts

	Evaluation
	Unit testing
	Waveform inspection
	Array addition experiment
	Measurables
	Dynamic cross-section
	Cascade effect
	Performance
	Logic element cost

	Processor design test

	Conclusions
	Main contributions – summary
	Future work

	Bibliography

